Abstract
Surrogate-assisted evolutionary algorithms (SAEAs), which use efficient surrogate models or meta-models to approximate the fitness function in evolutionary algorithms (EAs), are effective and popular methods for solving computationally expensive optimization problems. During the past decades, a number of SAEAs have been proposed by combining different surrogate models and EAs. This paper dedicates to providing a more systematical review and comprehensive empirical study of surrogate models used in single-objective SAEAs. A new taxonomy of surrogate models in SAEAs for single-objective optimization is introduced in this paper. Surrogate models are classified into two major categories: absolute fitness models, which directly approximate the fitness function values of candidate solutions, and relative fitness models, which estimates the relative rank or preference of candidates rather than their fitness values. Then, the characteristics of different models are analyzed and compared by conducting a series of experiments in terms of time complexity (execution time), model accuracy, parameter influence, and the overall performance when used in EAs. The empirical results are helpful for researchers to select suitable surrogate models when designing SAEAs. Open research questions and future work are discussed at the end of the paper.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.