Abstract

Abstract This study proposes an image composition technique based on convolutional neural networks (CNNs) to construct a surrogate model for predicting fan plots of three-dimensional (3D) composite blades, which represent natural frequency lists at different rotational speeds. The proposed method composes critical 2D cross-section images to improve the accuracy of the model. Numerical examples with various compositions of cross-section images are presented to demonstrate the efficacy of the CNN model. Additionally, gradient-weighted class activation mapping analysis is used to reveal the relationship between the internal structure of the blade and the fan plots. The study shows that using multiple images in the image composition technique improves the accuracy of the model compared to using single or fewer images. Overall, the proposed method provides a promising approach for predicting fan plots of 3D composite blades using CNN models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.