Abstract

Spacers are integral to the operation of membrane systems for both structural purposes and improving mass transfer dynamics that drive water permeation at the cost of increased pressure losses. 321 computational fluid dynamics (CFD) simulations were performed to provide high-fidelity data on hydrodynamic and mass transport behavior of spacer-filled membrane channels. CFD simulations were used to investigate the impact of the geometric parameters of spacers on pressure loss and concentration polarization in membrane channels. Spacer designs were characterized using six parameters that were varied in simulations to sample the domain of commercially available designs. Machine learning models were trained on CFD data to produce surrogate models for predicting pressure loss and mass transfer coefficients. These surrogate models consider more geometric parameters than existing empirical equations resulting in more representative and flexible models that can be integrated into existing module-scale or system-scale modeling software. Surrogate models were coupled with a particle swarm optimization algorithm and found that spacer designs with a diameter of 0.3 mm, length of 3.6 mm, angle between 42 and 46°, and moderate diameter necking (~60 %) best balances the trade-off between reduced concentration polarization and increased pressure losses in membrane channels with channel velocities between 0.05 and 0.35 m/s.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.