Abstract

The wind farm layout optimisation problem involves finding the optimal locations for wind turbines on a wind farm site in order to minimise the so-called “wake effect”. The wake effect is the effect of turbulence on wind velocity produced by a turbine's rotating blades. This results in reduction in power production and increased fatigue in downstream turbines inside the wake. This paper uses wind velocity data produced from expensive Computational Fluid Dynamics (CFD) simulations of a rotating wind turbine at various incoming wind speeds to generate ground truth wake data, and explores the ability of machine learning algorithms to create surrogate models for predicting the reduced-velocity wind speeds inside a wake. In an extensive evaluation, we show that (i) given data from a CFD simulation, we can construct a model to interpolate wind velocity inside the wake at any arbitrary 3D point with high levels of accuracy; and (ii) given data from several CFD simulations (the training data) we can also accurately predict wind velocities in the wake of CFD simulations that we have not yet run (i.e. we can extrapolate to simulations where the incoming wind speeds are different to those in the training data). The net effect of these findings are that they pave the way towards the construction of novel and improved wake models for wind turbines, which in turn can be incorporated into existing algorithms for solving wind farm layout optimisation problems more accurately.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.