Abstract

We present a reduced-order surrogate model of gravitational waveforms from non-spinning binary black hole systems with comparable to large mass-ratio configurations. This surrogate model, \texttt{BHPTNRSur1dq1e4}, is trained on waveform data generated by point-particle black hole perturbation theory (ppBHPT) with mass ratios varying from 2.5 to 10,000. \texttt{BHPTNRSur1dq1e4} extends an earlier waveform model, \texttt{EMRISur1dq1e4}, by using an updated transition-to-plunge model, covering longer durations up to 30,500 $m_1$ (where $m_1$ is the mass of the primary black hole), includes several more spherical harmonic modes up to $\ell=10$, and calibrates subdominant modes to numerical relativity (NR) data. In the comparable mass-ratio regime, including mass ratios as low as $2.5$, the gravitational waveforms generated through ppBHPT agree surprisingly well with those from NR after this simple calibration step. We also compare our model to recent SXS and RIT NR simulations at mass ratios ranging from $15$ to $32$, and find the dominant quadrupolar modes agree to better than $\approx 10^{-3}$. We expect our model to be useful to study intermediate-mass-ratio binary systems in current and future gravitational-wave detectors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.