Abstract
Advanced diagnostic algorithms and high-fidelity simulation models improve the accuracy of model-based gas path fault diagnosis for gas turbines (GTs). But simultaneously, it becomes difficult in real-time applications due to the increased calculation amount. To improve the diagnosis speed, this study adopts the surrogate method to realize the real-time gas path fault diagnosis of GTs under transient operating conditions. First, the component level model (CLM) is built and verified. Subsequently, the surrogate model is established by combining the artificial neural network (ANN) and the necessary physical model. The constructed surrogate model can almost entirely reproduce the simulation results of CLM under the whole operation conditions. Finally, the real-time fault diagnosis system combines the surrogate model and the unscented Kalman filter (UKF). The results show that the surrogate model-based fault diagnosis system has the same accuracy as the CLM-based system. At the same time, the calculation speed is increased by nearly 50 times, which meets the real-time requirements of fault diagnosis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.