Abstract
New methods for identifying the material properties of planar objects as a result of measurements by the eddy current method are proposed. The methods are based on the latest surrogate strategies and advanced optimization techniques that improve efficiency and reduce resource consumption of problem solutions, and balance computational complexity with the accuracy of the results. High-performance metamodels for global surrogate optimization are based on deep truly meaningful fully connected neural networks, serving as an additional function of accumulating apriori information about objects. High accuracy of the approximation of the multidimensional response surface, which is determined by the “exact” electrodynamic model of the testing process, is ensured by performing calculations according to the computer design of a homogeneous experiment with a low weighted symmetric centered discrepancy. The results of numerical experiments performed for full and reduced dimensional search spaces, which can be obtained by linear transformations using the principal component method, are presented. The verification of the methods proved their sufficiently high accuracy and computational performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.