Abstract

In this paper a precedently developed surrogate optimization algorithm for fossil fuels, which originally allowed simultaneous fitting of the true boiling point (TBP) curve, the liquid density at 15 °C, and the cetane number, is refined toward its application to biodiesel and its mixtures with fossil diesel. For this purpose, the algorithm is extended (1) to also include fitting of the kinematic viscosity at 40 °C and (2) to account for peculiarities of biodiesel concerning its narrow boiling range and compensation of systematic errors of measured boiling curves. To illustrate these improvements, first, the algorithm is applied to property estimation and surrogate optimization of three different biodiesel fuels, for which surrogates consisting of one to three components are proposed. Second, a surrogate for a commercial European fossil diesel is calculated and produced in lab-scale. Finally, the algorithm is used for surrogate optimization and property estimation of mixtures of biodiesel and fossil diesel...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.