Abstract

AbstractBayesian inverse modeling is important for a better understanding of hydrological processes. However, this approach can be computationally demanding, as it usually requires a large number of model evaluations. To address this issue, one can take advantage of surrogate modeling techniques. Nevertheless, when approximation error of the surrogate model is neglected, the inversion result will be biased. In this paper, we develop a surrogate‐based Bayesian inversion framework that explicitly quantifies and gradually reduces the approximation error of the surrogate. Specifically, two strategies are proposed to quantify the surrogate error. The first strategy works by quantifying the surrogate prediction uncertainty with a Bayesian method, while the second strategy uses another surrogate to simulate and correct the approximation error of the primary surrogate. By adaptively refining the surrogate over the posterior distribution, we can gradually reduce the surrogate approximation error to a small level. Demonstrated with three case studies involving high dimensionality, multimodality, and a real‐world application, it is found that both strategies can reduce the bias introduced by surrogate approximation error, while the second strategy that integrates two methods (i.e., polynomial chaos expansion and Gaussian process in this work) that complement each other shows the best performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.