Abstract
Complex-valued data are ubiquitous in signal and image processing applications, and complex-valued representations in deep learning have appealing theoretical properties. While these aspects have long been recognized, complex-valued deep learning continues to lag far behind its real-valued counterpart. We propose a principled geometric approach to complex-valued deep learning. Complex-valued data could often be subject to arbitrary complex-valued scaling; as a result, real and imaginary components could covary. Instead of treating complex values as two independent channels of real values, we recognize their underlying geometry: we model the space of complex numbers as a product manifold of nonzero scaling and planar rotations. Arbitrary complex-valued scaling naturally becomes a group of transitive actions on this manifold. We propose to extend the property instead of the form of real-valued functions to the complex domain. We define convolution as the weighted Fréchet mean on the manifold that is equivariant to the group of scaling/rotation actions and define distance transform on the manifold that is invariant to the action group. The manifold perspective also allows us to define nonlinear activation functions, such as tangent ReLU and G -transport, as well as residual connections on the manifold-valued data. We dub our model SurReal, as our experiments on MSTAR and RadioML deliver high performance with only a fractional size of real- and complex-valued baseline models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE transactions on neural networks and learning systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.