Abstract
The sulfur response regulator, SurR, is among a handful of known redox-active transcriptional regulators. First characterized from the hyperthermophile Pyrococcus furiosus, it is unique to the archaeal order Thermococcales. P. furiosus has two modes of electron disposal. Hydrogen gas is produced when the organism is grown in the absence of elemental sulfur (S0 ) and H2 S is produced when grown in its presence. Switching between these metabolic modes requires a rapid transcriptional response and this is orchestrated by SurR. We show here that deletion ofSurR causes severely impaired growth in the absence of S0 since genes essential for H2 metabolism are no longer activated. Conversely, a strain containing a constitutively active SurR variant displays a growth phenotype in the presence of S0 due to constitutive repression of S0 -responsive genes. During a metabolic shift initiated by addition of S0 to the growth medium, both strains demonstrate a de-regulation of genes involved in the SurR regulon, including hydrogenase and related S0 -responsive genes. These results demonstrate that SurR is a master regulator of electron flow within P. furiosus, likely affecting the pools of ferredoxin, NADPH and NADH, as well as influencing metabolic pathways and thiol/disulfide redox balance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.