Abstract

Rate constants and product branching fractions of reactions between diatomic interhalogens (ICl, ClF) and a series of anions (Br-, I-) and cations (Ar+, N2+) are measured using a selected ion flow tube apparatus and reported over the temperature range 200-500 K. The efficiency of both anion reactions with ICl is 2%-3% at 300 K to yield Cl-, increasing with temperature in a manner consistent with the small endothermicities of the reactions. The anion reactions with ClF are 10%-20% efficient at 300 K to yield Cl- and also show a positive temperature dependence despite being highly exothermic. The stationary points along the anion + ClF reaction coordinates were calculated using density functional theory, showing no endothermic barriers inhibiting reaction. The observed temperature dependence can be rationalized by a decreasing dipole attraction with increasing rotational energy, but confirmation requires trajectory calculations of the systems. All four cation reactions are fairly efficient at 300 K with small positive temperature dependences, despite large exothermicities to charge transfer. Three of the four reactions proceed exclusively by dissociative charge transfer to yield Cl+. The N2+ + ClF reaction proceeds by both non-dissociative and dissociative charge transfer, with the non-dissociative channel surprisingly increasing with increasing temperature. The origins of these behaviors are not clear and are discussed within the framework of charge-transfer reactions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.