Abstract

Microstructural investigation of compression-induced herniation of the flexed lumbar disc. To provide a microstructural analysis of the mechanisms of annular wall failure in healthy discs subjected to flexion and a rate of compression comparable with the maximum rate at which the muscles of the spinal column can generate a force. Clinical evidence indicates the involvement of the endplate in herniation. It is known that both an elevated rate of compression and a flexed posture are necessary to cause disc failure either within the midspan of the annulus or at the annular-endplate interface. However, the question of what effect a sudden or "surprise" loading might have on the mode of failure is, as yet, unanswered. Twenty-four healthy mature ovine lumbar motion segments were compressed to failure in high physiological flexion (10º). This occurred over approximately 5 mm of crosshead displacement in 0.75 seconds that resulted in a displacement rate of 400 mm/min (defined as a "surprise" rate) and was intended to simulate the maximum rate at which the muscles of the spinal column can generate a force. The damaged discs were then analyzed microstructurally. Fifty-eight percent of discs suffered annular-endplate junction rupture, 25% suffered midspan annular rupture, and the balance of 17% endplate fracture. Microstructural analysis indicated that annular rupture initiated at the endplate apical ridge in the mid-to-outer region of the annulus in both annular-endplate and midspan annulus rupture. Motion segments subjected to a "surprise" loading rate are likely to fail via some form of annular rupture. Failure under such sudden loading occurs mostly via rupture of the annular-endplate junction and is thought to arise from a rate-induced mechanostructural imbalance between the annulus and the endplate. N/A.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.