Abstract
Recently, trapped-particle experiments have probed the instantaneous velocity of Brownian motion revealing that, at early times, hydrodynamic history forces dominate Stokes damping. In these experiments, nonuniform particle motion is well described by the Basset-Boussinesq-Oseen (BBO) equation, which captures the unsteady Basset history force at a low Reynolds number. Building off of these results, earlier we showed that, at low temperature, BBO particles could exploit fluid inertia in order to overcome potential barriers (generically modeled as a tilted washboard), while its Langevin counter-part could not. Here, we explore the behavior of neutrally buoyant BBO particles at finite temperature for moderate Stokes damping. Remarkably, we find that the transport of particles injected into a bumpy potential with sufficiently high barriers can be completely quenched at intermediate temperatures, whereas itinerancy may be possible above and below that temperature window. This effect is present for both Langevin and BBO dynamics, though these occur over drastically different temperature ranges. Furthermore, hydrodynamic memory mitigates these effects by sustaining initial particle momentum, even in the difficult intermediate temperature regime.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.