Abstract

The influence of an in situ-grown, sol → gel-derived silicon oxide filler on mechanical, gas permeation and solvent affinity properties of Surlyn® materials, and melt processibility of Surlyn®/[silicon oxide] hybrid resin, was studied. Tensile modulus increases while elongation-at-break decreases with increasing silicon oxide uptake. He gas permeation vs. pressure profiles imply dual mode sorption. Swelling in n-hexane, 1-PrOH and xylene decreases as silicon oxide loading increases, the highest uptake being that of xylene. [Surlyn®Zn+2]/[silicon oxide] has better solvent resistance than the H-form hybrid for each solvent. Affinity of the Zn-form hybrid for xylene is considerably greater than that for 1-PrOH and n-hexane. Melt flow index of the filled H-form is lower than that of the unfilled H-form but higher than that of the partially Zn neutralized unfilled form. FTIR analysis of hybrids previously subjected to the melt flow index experiment shows that the silicon oxide phase remained intact but that the high temperatures drove condensation reactions between SiOH groups. After in situ sol–gel reactions and drying [Surlyn®-H]/[silicon oxide] flakes were passed through an extruder to assess the effect on silicon oxide structure of melt-processing conditions. All silicon oxide IR fingerprint bands for the processed hybrid persist, the spectrum closely resembling that of a nonextruded hybrid including the signature of Si–OH groups. 29Si solid-state NMR spectroscopy was used to probe degree of molecular connectivity within the silicon oxide phase. The spectrum is consistent with those of nonextruded hybrids in that Si atom coordination around SiO4 units is predominantly Q3 and Q4, the bias in the distribution toward Q3 being in harmony with the IR results. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 143–154, 1999

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.