Abstract
We study the surjectivity of, and the existence of right inverses for, the asymptotic Borel map in Carleman–Roumieu ultraholomorphic classes defined by regular sequences in the sense of E. M. Dyn’kin. We extend previous results by J. Schmets and M. Valdivia, by V. Thilliez, and by the authors, and show the prominent role played by an index, associated with the sequence, that was introduced by V. Thilliez. The techniques involve regular variation, integral transforms and characterization results of A. Debrouwere in a half-plane, stemming from his study of the surjectivity of the moment mapping in general Gelfand–Shilov spaces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.