Abstract

Workflow guidance of surgical activities is a challenging task. Because of variations in patient properties and applied surgical techniques, surgical processes have a high variability. The objective of this study was the design and implementation of a surgical workflow management system (SWFMS) that can provide a robust guidance for surgical activities. We investigated how many surgical process models are needed to develop a SWFMS that can guide cataract surgeries robustly. We used 100 cases of cataract surgeries and acquired patient-individual surgical process models (iSPMs) from them. Of these, randomized subsets iSPMs were selected as learning sets to create a generic surgical process model (gSPM). These gSPMs were mapped onto workflow nets as workflow schemata to define the behavior of the SWFMS. Finally, 10 iSPMs from the disjoint set were simulated to validate the workflow schema for the surgical processes. The measurement was the successful guidance of an iSPM. We demonstrated that a SWFMS with a workflow schema that was generated from a subset of 10 iSPMs is sufficient to guide approximately 65% of all surgical processes in the total set, and that a subset of 50 iSPMs is sufficient to guide approx. 80% of all processes. We designed a SWFMS that is able to guide surgical activities on a detailed level. The study demonstrated that the high inter-patient variability of surgical processes can be considered by our approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.