Abstract

Background Chiari-like malformation in dogs and Chiari malformation type 1 in humans are conditions characterized by a relatively small caudal cranial fossa, leading to cerebellar herniation. This study aimed to develop a rat model of Chiari-like malformation using surgical techniques based on morphological characteristics observed in dogs. Methods Endocranial magnetic resonance images of both normal dogs and dogs diagnosed with Chiari-like malformation were retrospectively analyzed. Measurements of the caudal cranial fossa volume, rostral and medial fossa volume, and volume index were taken. The differences in caudal cranial fossa volume and volume index between normal dogs and those diagnosed with Chiari-like malformation were then utilized to create a rat model of Chiari-like malformation through surgical intervention. The measurements were conducted on both the rat Chiari-like malformation models and normal rats, with each measurement taken twice and the mean values calculated. Results Significant differences were found between normal dogs and dogs diagnosed with Chiari-like malformation in terms of the volume of the caudal cranial fossa (27.62% reduction) and the volume index (23.36% reduction) (p<0.05). These differences were used to develop a rat model, which also showed significant reductions in both caudal cranial fossa volume (29.52%) and volume index (28.30%) compared to normal rats (p<0.05). The condition in the rat model was confirmed through magnetic resonance imaging, which revealed cerebellar herniation into the foramen magnum. Conclusions The study successfully established a rat model of Chiari-like malformation that accurately reproduces the morphological features observed in dogs. This model potentially serves as a valuable tool for investigating the pathological mechanisms and potential therapeutic approaches for Chiari-like malformation in veterinary medicine.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.