Abstract

Tendon transfer surgery restores function by rerouting working muscle-tendon units to replace the function of injured or paralyzed muscles. This procedure requires mobilizing a donor muscle relative to its surrounding myofascial connections, which improves the muscle's new line of action and increases excursion. However, the biomechanical effect of mobilization on a donor muscle's force-generating function has not been previously studied under invivo conditions. The purpose of this study was to quantify the effect of surgical mobilization on active and passive biomechanical properties of 3 large rabbit hind limb muscles. Myofascial connections were mobilized stepwise from the distal end to the proximal end of muscles (0%, 25%, 50%, and 75% of muscle length) and their active and passive length-tension curves were measured after each degree of mobilization. Second toe extensor, a short-fibered muscle, exhibited a 30% decline in peak stress and 70% decline in passive stress, whereas extensor digitorum longus, a short-fibered muscle, and tibialis anterior, a long-fibered muscle, both exhibited similar smaller declines in active (about 18%) and passive stress (about 65%). The results highlight 3 important points: (1) a trade-off exists between increasing muscle mobility and decreasing force-generating capacity; (2) intermuscular force transmission is important, especially in second toe extensor, because it was able to generate 70% of its premobilization active force although most fibers were freed from their native origin; and (3) muscle architecture is not the major influence on mobilization-induced force impairment. These data demonstrate that surgical mobilization itself alters the passive and active force-generating capacity of skeletal muscles. Thus, surgical mobilization should not be viewed simply as a method to redirect the line of action of a donor muscle because this procedure has an impact on the functional properties of the donor muscle itself.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.