Abstract

Automatic gesture recognition during surgical procedures is an enabling technology for improving advanced assistance features in surgical robotic systems (SRSs). Examples of such advanced features are user-specific feedback during execution of complex actions, prompt detection of safety-critical situations and autonomous execution of procedure sub-steps. Video data are available for all minimally invasive surgical procedures, but SRS could also provide accurate movements measurements based on kinematic data. Kinematic data provide low dimensional features for gesture recognition that would enable on-line processing during data acquisition. Therefore, we propose a Time Delay Neural Network (TDNN) applied to kinematic data for introducing temporal modelling in gesture recognition. Weevaluate accuracy and precision of the proposed method on public benchmark dataset for surgical gesture recognition (JIGSAWS). To evaluate the generalization capability of the proposed method, we acquired a new dataset introduing a different training exercise executed in virtual environment.The dataset is publicly available to enable other methods to be tested on it. The obtained results are comparable with other methods available in literature keeping also computational performance compatible with on-line processing during surgical procedure. The proposed method and the novel dataset are key-components in the development of future autonomous SRSs with advanced situation awareness capabilities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.