Abstract
The 2011 Tohoku earthquake of Mw9.0 generated a massive tsunami that devastated communities along the northeastern Japan coasts and damaged coastal infrastructure across the Pacific. A nearshore observatory in Honolulu recorded clear signals of the surface elevation and flow velocity at 12 m water depth, where adjacent harbors and marinas experienced persistent hazardous surges. The measurements allow validation of numerical model results, which in turn reveal complex oscillation and flow patterns due to resonance over the insular shelf and reef system. The computed wave amplitude and flow speed increase from 0.4 m and 0.1 m/s at the 100‐m depth contour to 1.6 m at the shore and 3.3 m/s near an entrance to Honolulu Harbor. Although resonance of the tsunami along the Hawaiian Islands produced the strongest surface signal at 42 min period, standing waves with periods 16 min or shorter, which are able to form nodes on the reefs, are the main driving force of the nearshore currents.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.