Abstract
THE BASAL GANGLIA have important roles in somatic motor, oculomotor, limbic, and associative functions. These functions are represented in anatomically distinct territories in each basal ganglion nucleus. During surgery of the subthalamic nucleus for Parkinson's disease, the primary goal is to influence the physiology of the motor territory without affecting nonmotor areas. This article describes the use of movement-related cellular activity during single-unit microelectrode mapping to identify and to navigate within the motor territory of the subthalamic nucleus.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.