Abstract

Abstract Compressor dynamics were studied in a gas turbine – fuel cell hybrid power system having a larger compressor volume than traditionally found in gas turbine systems. This larger compressor volume adversely affects the surge margin of the gas turbine. Industrial acoustic sensors were placed near the compressor to identify when the equipment was getting close to the surge line. Fast Fourier transform (FFT) mathematical analysis was used to obtain spectra representing the probability density across the frequency range (0–5000 Hz). Comparison between FFT spectra for nominal and transient operations revealed that higher amplitude spikes were observed during incipient stall at three different frequencies, 900, 1020, and 1800 Hz. These frequencies were compared to the natural frequencies of the equipment and the frequency for the rotating turbomachinery to identify more general nature of the acoustic signal typical of the onset of compressor surge. The primary goal of this acoustic analysis was to establish an online methodology to monitor compressor stability that can be anticipated and avoided.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.