Abstract

Thermographic imaging is a fast and contactless way of inspecting material parts. Usually, with model-driven evaluation procedures, lateral heat flow is ignored, and, thus, 1D reconstruction is applied to detect defects. However, to correctly size defects, the lateral heat flow must be considered, which requires a full 3D reconstruction. The 3D thermal defect imaging is a major challenge because heat propagation is an irreversible process. The virtual wave concept (VWC) is a recently developed method that considers both lateral and axial heat flows and, therefore, allows multidimensional reconstruction at improved spatial resolution. This approach decomposes the problem into two steps; can be used for 1D, 2D, and 3D heat conduction problems; and provides new alternatives to using physical priors (e.g., nonnegativity and/or sparsity), all of which improve reconstruction accuracy at a relatively low computational cost.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.