Abstract
Recently, we showed that optimization problems, both in infinite as well as in finite dimensions, for continuous variables and soft excluded volume constraints, can display entire isostatic phases where local minima of the cost function are marginally stable configurations endowed with non-linear excitations [, ]. In this work we describe an athermal adiabatic algorithm to explore with continuity the corresponding rough high-dimensional landscape. We concentrate on a prototype problem of this kind, the spherical perceptron optimization problem with linear cost function (hinge loss). This algorithm allows to ‘surf’ between isostatic marginally stable configurations and to investigate some properties of such landscape. In particular we focus on the statistics of avalanches occurring when local minima are destabilized. We show that when perturbing such minima, the system undergoes plastic rearrangements whose size is power law distributed and we characterize the corresponding critical exponent. Finally we investigate the critical properties of the unjamming transition, showing that the linear interaction potential gives rise to logarithmic behavior in the scaling of energy and pressure as a function of the distance from the unjamming point. For some quantities, the logarithmic corrections can be gauged out. This is the case of the number of soft constraints that are violated as a function of the distance from jamming which follows a non-trivial power law behavior.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Statistical Mechanics: Theory and Experiment
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.