Abstract
The development of Shark Chaser by the U.S. Navy during World War II was the first serious effort to develop a chemical shark repellent. In the decade following the war reports of Shark Chaser ineffectiveness led the Office of Naval Research to search for a more efficacious shark repellent. After years without success, ONR eventually canceled the use of Shark Chaser and abandoned the search for a chemical shark repellent. In the early 1970s, interest in chemical shark repellents was renewed by the discovery of pardaxin, a natural shark repellent secreted by the Red Sea Moses sole, Pardachirus marmoratus. The surfactant-like nature of pardaxin led investigators to test the potential of various surfactants as repellents. Subsequent studies indicated that the shark repellent efficacy of the effective alkyl sulfate surfactants was due to their hydrophobic nature. Here we report tests conducted on juvenile swell sharks, Cephaloscyllium ventriosum, to determine if the noxious quality of alkyl sulfates is affected by surfactant hydrophobicity [carbon chain length and ethylene oxide (EO) groups] and counterions. Our results indicate that the aversive response of sharks to alkyl sulfate surfactants increases with carbon chain length from octyl to dodecyl, decreases with the addition of EO groups and is not affected by counterions. This study confirms that dodecyl sulfate is the most effective surfactant shark repellent, but it does not meet the Navy’s potency requirement for a nondirectional surrounding-cloud type repellent of 100 parts per billion (0.1.μg ml−1). Thus, dodecyl sulfate is only practical as a directional repellent such as in a squirt application. Future research should test the action of alkyl sulfates on cell membranes, the potential of other biotoxic agents, and semiochemicals in the search for an effective chemical shark repellent.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.