Abstract
Dyes pollution have raised great attention due to its fatal harm on aquatic ecosystem and human health. Generally, multiple dyes (anionic dyes, cationic dyes) present in real wastewater systems. In this work, methyl orange (MO) as anionic dye and rhodamine B (RhB) as cationic dye were chosen as typical dyes to investigate the removal behavior with surfactant-modified three-dimensional MgAl layered double hydroxide (S3D-LDH) via macroscopic and microscopic analyses. Adsorption isotherms revealed that the maximum adsorption capacity of MO and RhB could reach 380.2 and 49.6 mg·g−1, respectively. The removal process between S3D-LDH and ionic dyes was identified to be a chemical reaction via adsorption kinetics. XRD and MIR demonstrated a decrease of d-spacing value and a red shift of the stretching vibration of lattice water and hydroxyl group in the MO removal and increased d-spacing and a blue shift of water with hydroxyl group in the RhB removal. X-ray photoelectron spectroscopy (XPS) revealed that the RSO3 peak emerged after MO adsorption and the negative bond shift of unbound sulfur of S 2p after RhB adsorption. All investigations revealed that MO adsorbed by S3D-LDH via anion exchange and hydrogen bonding whereas surface adsorption was deemed as the primary pathway for RhB. Furthermore, the MO and RhB adsorption capacity by S3D-LDH was both enhanced in binary component systems. S3D-LDH was demonstrated as a potential broad-spectrum adsorbent for the treatment of dyes wastewater.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.