Abstract

Breath figure (BF) process is a facile method to prepare honeycomb structures by dynamic movements of condensed micrometer-sized water droplets at the interface of volatile fluid. Here, we aim to find answers to understand how the BF process occurs on micropipettes with curvature gradient and to understand the role of the surfactant in obtaining honeycomb patterns. Poly (L-lactic acid) (PLLA) chloroform solution with dioleoylphosphatidylethanolamine (DOPE) as surfactant was utilized. It is found that the honeycomb structure formed on the micropipettes changes remarkably with the gradually increased surface curvature. The variation trends of the arrangement and diameter of pores on the micropipettes with the increasing curvature are similar to the different time stages of BF process: smaller and sparse pores formed at higher curvature are similar to those formed at early stage of BF; regular honeycomb patterns formed at lower curvature are similar to those formed at the late stage of BF. Especially, the "semi-coalescence" hemispherical pores strings are found at high curvatures on PLLA-DOPE films, indicating the surfactant-induced coalescence of water droplets in BF process. The differences of drying speed of polymer solvent on micropipette with gradually increased curvatures make the printing of the pores at different BF stages on polymer film possible. These findings not only strongly support the mechanism of BF array formation, but also elucidate the surfactant-induced coalescence.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call