Abstract

Abstract Formic acid oxidation is usually catalyzed on PdPt bimetallic catalysts, which are synthesized by co-reduction of noble metal precursors in the presence of high molecular capping agents. In this work, surfactant-free PdxPty/C catalysts are synthesized by H2 reduction in ethylene glycol assisted with ultrasonication vibration at room temperature. Nanoparticle agglomeration in the course of preparation has been sufficiently curbed by strong mechanical ultrasonication instead of traditionally-employed surfactants. As a result, “clean” surfactant-free PdxPty/C catalysts necessitate only simple washing before collection. The catalysts are characterized by transmission electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy. The compositionally optimized Pd100Pt1/C catalyst registers a mass activity of 3171 A g−1 (Pt + Pd) for formic acid oxidation in 0.5 M H2SO4+0.5 M HCOOH, which lists one of the best results reported so far and surpasses that of a commercial Pd/C by 5.6 times. Stability of the catalysts is investigated by cyclic voltammetric as well as chronoamperometric evaluations. This work offers a convenient and environmentally benign room-temperature route to synthesize highly active and stable catalysts for formic acid oxidation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.