Abstract

Titanium dioxide/reduced graphene oxide nanocomposites (TiO2/RGO-X, X=S, T or C, was denoted sodium dodecyl benzene sulfonate, Triton X-100 and cetyl trimethyl ammonium bromide, respectively) were synthesized using a one-step surfactant-assisted hydrothermal method. The characterization of phase structure and morphology of the as-obtained nanocomposites reveals that TiO2 in the TiO2/RGO-X exhibits the morphologies of nanoparticles, nanowires and array-like nanowires on the surface of RGO, respectively. Compared with the control TiO2/RGO nanocomposite, TiO2/RGO-X presents an excellent photocatalytic activity. With uniform array-like TiO2 nanowires on the surface of RGO, the TiO2/RGO-C shows a significant enhancement in the photocatalytic efficiency. Besides, a deeper insight into the growth mechanism of TiO2/RGO nanocomposites is put forward. This work indicates that the surfactant-assisted hydrothermal method is an effective approach to improve the structure, morphology and photocatalytic performance of TiO2/RGO composites. Moreover, the surfactants with various types can interact with the precursors of TiO2 and RGO in different ways.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call