Abstract
Preparation of conducting-polymer hollow nanoparticles with different diameters was accomplished by surfactant templating. An anionic surfactant, namely sodium dodecylbenzenesulfonate, formed vesicles to template with the pyrrole monomer. Subsequent chemical oxidative polymerization of the monomer yielded spherical polypyrrole (PPy) nanoparticles with hollow interiors. The diameter of the hollow nanoparticles was easily controlled by adjusting the concentration of the surfactant. Subsequently, the size-dependent electrochemical properties of the nanoparticles, including redox properties and charge/discharge behavior, were examined. By virtue of the structural advantages, the specific capacitance (max. 326 F g−1) of PPy hollow nanoparticles was approximately twice as large as that of solid PPy nanospheres. The hollow PPy nanostructure can easily be used as a conductive substrate for the preparation of metal/polymer nanohybrids through chemical and electrochemical deposition. Two different pseudocapacitive metal-oxide clusters were readily deposited on the inner and outer surfaces of the hollow nanoparticles, which resulted in an increase in the specific capacitance to 390 F g−1. In addition, the hollow nanoparticles acted as a nanocage to prevent metal ion leaching during charge/discharge, thus allowing an excellent capacitance retention of ca. 86%, even following 10,000 cycles.
Highlights
Nanostructures are of interest in a wide range of applications, ranging from optoelectronic to electrochemical devices
The huge demand for hollow nanoparticles has expedited the development of various synthetic strategies, which can be categorized into two main classes, namely hard template and soft template syntheses
We report the syntheses of spherical PPy nanoparticles with hollow interiors using surfactant templating, in which an anionic surfactant will be used to build up vesicles as a template for the hollow nanostructures
Summary
Nanostructures are of interest in a wide range of applications, ranging from optoelectronic to electrochemical devices. The most common technique has been the hard template route, employing templates such as silica, gold, and polymeric nanoparticles[17,18,19,20,21,22,23]. Conducting polymers that can store electric charge by a redox pseudo-capacitive mechanism have been explored for use in rechargeable energy storage devices due to their exclusive advantages, such as facile synthesis, structural diversity, low weight, and flexibility[29,30,31]. We expect that the resulting metal/polymer hollow nanoparticles will be demonstrated to be promising electrode materials for high-performance electrochemical capacitors. It should be noted that at present, little research has been carried out on the use of hollow conducting polymer nanostructures for energy storage applications, mainly due to difficulties in their preparation
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.