Abstract
Dominant mutations in coding regions of the surfactant protein-C gene, SFTPC, cause respiratory distress syndrome (RDS) in infants. However, the contribution of variants in noncoding regions of SFTPC to pulmonary phenotypes is unknown. By using a case-control group of infants > or =34 weeks gestation (n = 538), we used complete resequencing of SFTPC and its promoter, genotyping, and logistic regression to identify 80 single nucleotide polymorphisms (SNPs). Three promoter SNPs were statistically associated with neonatal RDS among European descent infants. To assess the transcriptional effects of these three promoter SNPs, we selectively mutated the SFTPC promoter and performed transient transfection using MLE-15 cells and a firefly luciferase reporter vector. Each promoter SNP decreased SFTPC transcription. The combination of two variants in high linkage dysequilibrium also decreased SFTPC transcription. In silico evaluation of transcription factor binding demonstrated that the rare allele at g.-1167 disrupts a SOX (SRY-related high mobility group box) consensus motif and introduces a GATA-1 site, at g.-2385 removes a MZF-1 (myeloid zinc finger) binding site, and at g.-1647 removes a potential methylation site. This combined statistical, in vitro, and in silico approach suggests that reduced SFTPC transcription contributes to the genetic risk for neonatal RDS in developmentally susceptible infants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.