Abstract

Surfactant-associated protein A (SP-A) is involved in surfactant homeostasis and host defense in the lung. We have previously demonstrated that SP-A specifically binds to and enhances the ingestion of bacillus Calmette-Guerin (BCG) organisms by macrophages. In the current study, we investigated the effect of SP-A on the generation of inflammatory mediators induced by BCG and the subsequent fate of ingested BCG organisms. Rat macrophages were incubated with BCG in the presence and absence of SP-A. Noningested BCG organisms were removed, and the release of tumor necrosis factor-alpha (TNF-alpha) and nitric oxide were measured at varying times. TNF-alpha and nitric oxide production induced by BCG were enhanced by SP-A. In addition, SP-A enhanced the BCG-induced increase in the level of inducible nitric oxide synthase protein. Addition of antibodies directed against SPR210, a specific macrophage SP-A receptor, inhibited the SP-A-enhanced mediator production. BCG in the absence of SP-A showed increased growth over a 5-day period, whereas inclusion of SP-A dramatically inhibited BCG growth. Inhibition of nitric oxide production blocked BCG killing in the presence and absence of SP-A. These results demonstrate that ingestion of SP-A-BCG complexes by rat macrophages leads to production of inflammatory mediators and increased mycobacterial killing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.