Abstract
Nanodiscs are self-assembled discoidal nanoparticles composed of amphiphilic α-helical scaffold proteins or peptides that wrap themselves around the circumference of a lipid bilayer in a beltlike manner. In this study, an amphiphilic helical peptide that mimics helix 10 of human apoA-I was newly synthesized by solid phase peptide synthesis using Fmoc chemistry, and its physicochemical properties, including surface tension, self-association, and solubilization abilities, were evaluated and related directly to nanodisc formation. The synthesized peptide having hydrophobic and hydrophilic faces behaves like a general surfactant, affording a critical association concentration (CAC) of 2.7 × 10(-5) M and a γCAC of 51.2 mN m(-1) in aqueous solution. Interestingly, only a peptide solution above its CAC was able to microsolubilize L-α-dimyristoylphosphatidylcholine (DMPC) vesicles, and lipid nanodiscs with an average diameter of 9.5 ± 2.7 nm were observed by dynamic light scattering and negative stain transmission electron microscopy. Moreover, the ζ potentials of the lipid nanodiscs were measured for the first time as a function of pH, and the values changed from positive (20 mV) to negative (-30 mV). In particular, nanodisc solutions at acidic pH 4 (20 mV) or basic pH 9 (-20 mV) were found to be stable for more than 6 months as a result of the electrostatic repulsion between the particles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Langmuir : the ACS journal of surfaces and colloids
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.