Abstract

Nanofiltration (NF) technology shows significant potential for lithium extraction, but the limited Mg2+ rejection of conventional negatively charged NF membranes constrains Li+/Mg2+ selectivity. This work proposed a surfactant-interlayer assisted interfacial polymerization (SIAIP) methodology to convert a traditional NF membrane into a Janus membrane featuring dual-electrical properties. Sodium dodecyl sulfate (SDS) restricted the IP reaction region and modulated the interfacial diffusion behavior of amine monomers. The hydrophilic and negatively charged hyaluronic acid (HA) interlayer modified the substrate, enhancing membrane permeability. Under the combined influence of SDS and HA, more amine monomers were stored and diffused to the reaction interface, transforming the membrane surface into a positively charged region and forming a Janus structure with the negatively charged interlayer. The optimal SIAIP membranes possessed a homogeneous pore size distribution, with a high selectivity (S Li, Mg) of 42.15 and superb permeability of 11.06 L m−2 h−1 bar−1. This investigation furnishes an innovative approach for developing high-efficiency Li+/Mg2+ separating NF membranes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.