Abstract

Heterojunctions between different graphitic nanostructures, including fullerenes, carbon nanotubes and graphene-based sheets, have attracted significant interest for light to electrical energy conversion. Because of their poor solubility, fabrication of such all-carbon nanocomposites typically involves covalently linking the individual constituents or the extensive surface functionalization to improve their solvent processability for mixing. However, such strategies often deteriorate or contaminate the functional carbon surfaces. Here we report that fullerenes, pristine single walled carbon nanotubes, and graphene oxide sheets can be conveniently coassembled in water to yield a stable colloidal dispersion for thin film processing. After thermal reduction of graphene oxide, a solvent-resistant photoconductive hybrid of fullerene-nanotube-graphene was obtained with on-off ratio of nearly 6 orders of magnitude. Photovoltaic devices made with the all-carbon hybrid as the active layer and an additional fullerene block layer showed unprecedented photovoltaic responses among all known all-carbon-based materials with an open circuit voltage of 0.59 V and a power conversion efficiency of 0.21%. The ease of making such surfactant-free, water-processed, carbon thin films could lead to their wide applications in organic optoelectronic devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.