Abstract

Three-dimensional metallic nanonetworks (3D-MNWs) demonstrate unique performances across a wide range of fields, and their facile and green synthetic method is of high significance. Herein, we report a self-generated-nanobubble scaffolding strategy for the fabrication of 3D-MNWs, which employs aqua ammonia (AA) as a nanobubble reservoir and avoids the use of any surfactants or polymeric capping agents. Benefiting from the interaction between ammonia and metallic nanoparticles, finely interlocked nanonetworks (Au, Pt, Ag, and Cu) with curved geometry and abundant pores are obtained by precisely controlling the anisotropic kinetic growth using a strong reducing agent and a high concentration of AA. As a demonstration, the methanol oxidation reaction (MOR) is tested to assess the electrocatalytic performance of the Pt 3D-MNWs. The peak current of Pt 3D-MNWs reaches 152 mA/mgPt, which is 2.5 times higher than that of commercial Pt black. This unique nanobubble-assisted strategy has great potential in the basic synthetic prototype for polyporous nanomaterials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.