Abstract

In this work, SnO2 hierarchical nanostructures were successfully prepared via a simple and surfactant-free hydrothermal process starting from stannous sulfate (SnSO4) and trisodium citrate dihydrate (Na3C6H5O7·2H2O) in a suitable ethanol–water system. TEM and HRTEM images showed that the obtained SnO2 products are uniform, well-dispersed, and have spherical architectures, composed of tiny primary nanocrystals, and the diameters are about 50 nm. It was found that the amount of Na3C6H5O7·2H2O and the volume ratio of ethanol and water played important roles in determining the final morphologies of the products. The gas sensing results indicated that the sensor made from porous SnO2 nanostructures calcined at 400 °C exhibited excellent gas sensing performance to butanol at the low temperature compared with those under higher calcination temperature and commercial SnO2. The SnO2 hierarchical nanostructures possess uniform size and large surface areas, making them ideal candidates for more potential applications such as battery electrodes and as opto-electronic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.