Abstract

Stable poly(styrene-co-2-ethylhexyl acrylate) latex particles with diameter less than 600 nm were prepared by the miniemulsion polymerization of Pickering emulsions stabilized with hexyl-functionalized cellulose nanocrystals (CNC-hexyl-COOHs). Polymer nanocomposites were fabricated by casting of the CNC-stabilized latex particles, and the thermomechanical properties and microstructures of the films were studied and related to the type and amount of stabilizer as well as the processing conditions. Compared to the latex films stabilized with low-molecular-weight sodium dodecyl sulfate (SDS) surfactant, or using a combination of SDS and carboxylic acid CNC-COOHs, films stabilized solely with the alkyl-functionalized CNC-hexyl-COOHs showed much higher storage moduli in the rubbery regime and lower water uptake. Scanning electron microscopy (SEM) revealed a CNC network structure that is formed by excluded volume effects of the latex particles, which concentrates the CNC-hexyl-COOHs into the interstitial space during solvent evaporation. This effect results in the formation of a percolation network at a lower CNC concentration within the latex composite films. The network can be further reinforced by increasing the concentration of CNCs through an “ex situ” process where CNC-hexyl-COOH-stabilized latex particles were mixed with CNC-COOH aqueous dispersions before film casting. The ability to replace low-molecular-weight surfactants in water-based latexes with alkyl-functionalized CNCs that are not only biosourced but also act as reinforcing agents offers an opportunity to expand the property profile of a variety of commercial products such as paints, coatings, and adhesives.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call