Abstract

Surfactant-enhanced in-situ chemical oxidation (S-ISCO) is widely applied in soil and groundwater remediation. However, the role of surfactants in the reactive species (RSs) transformation remains inadequately explored. This work introduced nonionic surfactant Tween-80 (TW-80) into a nano zero-valent iron (nZVI) activated persulfate (PS) system. The findings indicate that PS/nZVI/TW-80 system can realize the concurrent removal of trichloroethylene (TCE), tetrachloroethene (PCE), and carbon tetrachloride (CT), whereas CT cannot be eliminated without TW-80 presence. Further analysis unveiled that hydroxyl (HO•) and sulfate radicals (SO4-•) were the primary species for TCE and PCE degradation, while CT was reductively eliminated by surfactant radicals generated from TW-80. Moreover, the surfactant radicals were found to accelerate Fe(III)/Fe(II) cycle, reduce the production of iron sludge, and increase PS decomposition. The possible degradation routes of mixed chlorinated hydrocarbons (CHCs) and the decomposition pathways of TW-80 were proposed through the density function theory (DFT) calculation and intermediates analysis. Additionally, the effects of other nonionic surfactants on the simultaneous removal of TCE, PCE, and CT, and the practical applications using the actual contaminated groundwater were also evaluated. This study provides theoretical support for the simultaneous removal of CHCs, particularly those containing perchlorinated contaminants, using the S-ISCO techniques.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call