Abstract
In a previous work, the instability of a liquid film deposited on the inner walls of a capillary under the presence of insoluble surfactant was analyzed; for that purpose the surface tension was related to the interfacial concentration of surfactant by a linear equation. In general, that assumption is valid when just trace amounts of surfactant are present. The present work extends previous analysis by considering a non-linear surface equation of state derived from the Frumkin adsorption isotherm. This equation of state account not only for the existing quantities of surfactant but also for non-ideal interactions between adsorbed molecules. Except for the equation of state, both the model and the numerical technique employed do not differ from those used in the preceding work. The new predictions here presented show that a linear surface equation of state gives reasonable results for strong surfactants. However, the action of weaker surfactants strongly depends on other parameters: the initial concentration and the type and strength of interaction between adsorbed molecules. Thus, the use of a linear equation of state in these circumstances might give erroneous results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.