Abstract

We present a study of powder agglomeration and thermal conductivity in copper-based nanofluids. Synthesis of the copper powders was achieved by the use of three different surfactants (polyvinylpyrrolidone, oleic acid, and cetyl trimethylammonium bromide). After careful determination of morphology and purity, we systematically and rigorously compared all three of the surfactants for the production of viable copper-based nanofluids using dynamic light scattering. Our results show that the use of surfactants during synthesis of copper nanopowders has important consequences on the dispersion of the powders in a base fluid. The oleic-acid-prepared powders consisted of small particles of ∼100 nm that did not change with the addition of dispersant. The CTAB-prepared powders exhibited the best dispersion characteristics, as they formed small particles of approximately 80 nm in the presence of SDBS. The thermal conductivity enhancement in our nanofluids exhibited a linear relationship with powder loading for an av...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.