Abstract

Pulmonary lymphangioleiomyomatosis (LAM) is a rare lung disease caused by mutations of the tumor suppressor genes, tuberous sclerosis complex (TSC) 1 or TSC2. LAM affects women almost exclusively, and it is characterized by neoplastic growth of atypical smooth muscle-like TSC2-null LAM cells in the pulmonary interstitium, cystic destruction of lung parenchyma, and progressive decline in lung function. In this study, we hypothesized that TSC2-null lesions promote a proinflammatory environment, which contributes to lung parenchyma destruction. Using a TSC2-null female murine LAM model, we demonstrate that TSC2-null lesions promote alveolar macrophage accumulation, recruitment of immature multinucleated cells, an increased induction of proinflammatory genes, nitric oxide (NO) synthase 2, IL-6, chemokine (C-C motif) ligand 2 (CCL2)/monocyte chemotactic protein 1 (MCP1), chemokine (C-X-C motif) ligand 1 (CXCL1)/keratinocyte chemoattractant (KC), and up-regulation of IL-6, KC, MCP-1, and transforming growth factor-β1 levels in bronchoalveolar lavage fluid. Bronchoalveolar lavage fluid also contained an increased level of surfactant protein (SP)-D, but not SP-A, significant reduction of SP-B levels, and a resultant increase in alveolar surface tension. Consistent with the growth of TSC2-null lesions, NO levels were also increased and, in turn, modified SP-D through S-nitrosylation, forming S-nitrosylated SP-D, a known consequence of lung inflammation. Progressive growth of TSC2-null lesions was accompanied by elevated levels of matrix metalloproteinase-3 and -9. This report demonstrates a link between growth of TSC2-null lesions and inflammation-induced surfactant dysfunction that might contribute to lung destruction in LAM.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.