Abstract

HypothesisThe free energies associated with adsorption/desorption of individual surfactants from micelles and the fusion/scission of long micelles can be used to estimate the rate constants for micellar kinetics as functions of surfactant and salt concentration. ExperimentsWe compute the escape free energies △Gesc of surfactant from micelles and the scission free energies △Gsciss of long micelles from coarse-grained molecular dynamics simulations coupled with umbrella sampling, for micelles of both sodium dodecylsulfate (SDS) in sodium chloride (NaCl) and cetyltrimethylammonium chloride (CTAC) in sodium salicylate (NaSal). FindingsFor spherical micelles, △Gesc values have maxima at certain aggregation numbers, and at salt-to-surfactant molar concentration ratios R near unity, consistent with experiments. For cylindrical micelles, SDS/NaCl shows a minimum, and CTAC/NaSal a maximum in △Gesc, both at R ~ 0.7, while △Gsciss of CTAC micelles also peaks at around R ~ 0.7 and that of SDS micelles increases monotonically with R. We explain the non-monotonic dependence of escape and scission free energies on R by a combination of electrostatic screening and the decrease of micelle radius with increasing R. Transitions from predominantly spherical to cylindrical micelles, and between adsorption/desorption and fusion/scission kinetics with changing salt concentration can be inferred from the free energies for CTAC/NaSal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call