Abstract

In wet chemical syntheses of noble metal nanocrystals, surfactants play crucial roles in regulating their morphology. To date, more attention has been paid to the effect of the surfactant on the surface energy of crystal facets, while less attention has been paid to its effect on the growth kinetics. In this paper, using the growth of Au-Pd alloy nanocrystals as an example, we demonstrate that different concentration of surfactant hexadecyltrimethyl ammonium chloride (CTAC) may cause the different packing density of CTA+ bilayers on different sites (face, edge or vertex) of crystallite surface, which would change the crystal growth kinetics and result in preferential crystal growth along the edge or vertex of crystallites. The unique shape evolution from trisoctahedron to excavated rhombic dodecahedron and multipod structure for Au-Pd alloy nanocrystals was successfully achieved by simply adjusting the concentration of CTAC. These results help to understand the effect of surfactants on the shape evolution of nanocrystals and open up avenues to the rational synthesis of nanocrystals with the thermodynamically unfavorable morphologies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.