Abstract

Light-induced heating on a solid-liquid interface can generate a vapor submillimeter bubble and fluid flow, which enables us to densely and rapidly assemble dispersoids into a desired position (photothermal assembly). Here, we revealed that the surface modulation of the light-induced bubble by a surfactant dominates the assembly dynamics of nanoparticles and microparticles as dispersoids, which results in highly efficient photothermal assembly under the surfactant-controlled fluid flow. This mechanism can facilitate the concentration measurement of small objects (microparticles, bacteria, viruses, etc.). Particularly, we found that the surfactant-controlled fluid flow and bubble enable high-density assembly of dispersoids and remarkable enhancement of assembly efficiency, achieving 10-20 times in comparison with the case of no surfactant. This result can extend the limit of measurable concentration by one order. Furthermore, this study revealed the influence of concentration, size, and constituent material of the dispersoids on the assembly efficiency for the improvement of measurement precision. These findings are crucial for laser-induced assembly for the rapid concentration measurement of various microbes without a cultivation process as bioanalysis, for the high-sensitivity detection of harmful particles, and for the colloidal lithography.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.