Abstract
The effect of surfactants on chemical development of ion tracks in polymers has been studied. It has been shown that surface-active agents added to an alkaline etching solution adsorb on the polymer surface at the pore entrances. This reduces the etch rate, which leads to the formation of pores tapered toward the surface. Self-assembly of surfactant molecules at the pore entrance creates a barrier for their penetration into the etched-out nanopores, whereas hydroxide ions diffuse freely. Due to this, the internal pore volume grows faster than the pore surface diameter. The ability to control pore shape is demonstrated with the fabrication of profiled nano- and micropores in polyethylene terephthalate, polycarbonate. Some earlier published data on small track-etched pores in polycarbonate (in particular, the pore diameter vs. etching time curves measured conductometrically) have been revised in light of the above findings. Adding surfactants to chemical etchants makes it possible to optimize the structure of track membranes, thus improving their retention and permeation properties. Asymmetric membranes with thin skin retention layers have been produced and their performance studied.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.