Abstract

AbstractEffects of surfactant concentration, antioxidants with different polarities, and chelator type on the oxidative stability of water‐in‐stripped walnut oil (W/O) emulsions stabilized by polyglycerol polyricinoleate (PGPR) were evaluated. The formation of primary oxidation products (lipid hydroperoxides) and secondary oxidation products (hexanal) decreased with increasing PGPR concentrations (0.3–1.0 wt% of emulsions). Excess surfactant might solubilize lipid hydroperoxides out of the oil–water interface, resulting in the decreased lipid oxidation rates in W/O emulsions. At concentrations of 10–1000 μM, the polar Trolox demonstrated concentration‐dependent antioxidant activity according to both hydroperoxide and hexanal formation. The antioxidant efficiency of the non‐polar α‐tocopherol was slightly reduced at the higher range of 500–1000 μM based on hydroperoxide formation. Both ethylenediaminetetraacetic acid (EDTA) and deferoxamine (DFO) at concentrations of 5–100 μM reduced the rates of lipid oxidation at varying degrees, indicating that endogenous transition metals may promote lipid oxidation in W/O emulsions. EDTA was a stronger inhibitor of lipid oxidation than DFO. These results suggest that the oxidative stability of W/O emulsions could be improved by the appropriate choice of surfactant concentration, antioxidants, and chelators.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.