Abstract

BackgroundInkjet printing of graphene conductive inks plays a critical role in the technological advancement in flexible and stretchable electronics applications. In this study, water-based graphene conductive ink was fabricated and printed through inkjet printing on polyethylene terephthalate substrate. MethodsDeionized (DI) water and three different types of surfactants (sodium dodecyl sulfate (SDS), polyvinylpyrrolidone (PVP), and Gum Arabic GA)) were utilized in the preparation of graphene conductive inks. Significant FindingAmong other conductive ink formulations, graphene conductive inks fabricated using the DI/PVP surfactant exhibit relatively higher wetting and stability properties. In addition, this formulation led to an increment of about 80% in electrical conductivity compared to DI water-based conductive ink. The results revealed an improvement of about 50 times in the electrical conductivity of the printed film when the number of the printing cycle was increased from 1 to 10. Furthermore, it was observed that under 50% tensile strain, the graphene film prepared using the PVP surfactant exhibited only a 0.12% drop in electrical conductivity. Therefore, it is inferred that the conductive inks prepared from DI/PVP surfactants are highly suitable for use in flexible and wearable electronics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.