Abstract
A series of graphene materials are prepared by intercalation of graphene oxide (GO) with different surfactants, cetyltrimethylammonium bromide (CTAB), n-octyltrimethylammonium bromide, tetramethylammonium bromide, and sodium dodecylbenzene sulfonate, subsequently by γ-ray induced reduction in N-methyl-2-pyrrolidone (NMP) at room temperature. GO can be reduced by the electrons generated from the radiolysis of NMP under γ-ray irradiation, and reduced GO is simultaneously functionalized by the radiolytic product of NMP. Cationic surfactant CTAB with longer alkyl chains can effectively promote the reduction process of GO by preventing the aggregation of graphene sheets, which has been testified by X-ray photoelectron spectroscopy, X-ray diffraction, thermogravimetric analysis, Raman spectroscopy, and Fourier transform infrared spectroscopy analyses. Furthermore, when the as-prepared graphene/polyaniline composites are used for supercapacitor electrode materials, there is a highest specific capacitance of 484 F g−1 at a current density of 0.1 A g−1 for the graphene produced in the presence of cationic surfactant CTAB.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.